800KV HVDC cross-mountain lattice overhead power transmission steel structure tower
Our company, QINGDAO MEGATRO HOLDING, CO., LIMITED, is a full service engineering and manufacturing company with a global reputation for delivering excellence and innovation in tower supply. We have over 10 years of experience and innovation in engineering, designing, and building towers.
We design all kinds of towers and posts for:
Telecoms
Power transmission
TV and Radio Broadcast
Roads and City Development
Our complete selection of towers includes:
Self-supporting
Monopoles
Guyed towers
Custom-designed radar towers
Broadcast towers
Power transmission
MEGATRO also designs and manufactures tower related products including:
Fall protection
Antenna brackets
Other accessories if needed by clients
In power transmission line project, there are two type tower according to power current transmission type, AC and DC type. AC meant alternative current and DC direct current. In our china, DC power transmission used in 800KV line project and being first HVDC line from 1990s.
This photo refer to 800KV HVDC cross-mountain lattice overhead power transmission steel structure tower. There are only two phase conductor, which is six (or four )split ACSR and set OPGW on tower peak. The tower height from 50m to 80m, even higher or modify according to project requirements. Now in our china, HVDC transmission line not used widely, but for 400KV, 500KV and 800KV, China grid also run some lines. Because these tower will cross-river, then the tower height, weight and weight span data also bigger than other towers in the same lines.
Our MEGATRO provide and design this type 800KV HVDC cross-mountain lattice overhead power transmission steel structure tower, and mainly serve for our overseas client. Since 2004, MEGATRO focus mainly international market and had export many kind of transmission structures to overseas clients. MEGATRO has been manufacturing lattice transmission tower & tapered steel poles for lighting, traffic control, communication and utility applications. MEGATRO pioneered the development of transmission tower, telecom tower, substation, and other steel structure and was also at the forefront in the design of Transmission tower.
Today, with over 10 years of experience and our commitment to excellence, MEGATRO remains an industry leader in the manufacture and design of steel tubular & angular & monopole structures for all Highway, Municipal, Custom, telecom, lighting and electric Utility applications. MEGATRO has a complete staff of professional engineering personnel trained in the PLS Pole program and three different manufacturing processes for producing steel towers, poles and other supports. We utilize the latest versions of PLS-CADD, PLS-POLE, TOWER, AutoCAD and other CAD software.
The structure shall be designed according to load combinations given as per IEC 61936-1 and as illustrated below:
Normal loads
1 Dead weight load
2 Tension load
3 Erection load
4 wind load
Exceptional loads
1 Switching forces
2 short-circuit forces
3 Loss of conductor tension
4 Earthquake forces
MEGATRO is fully equipped and qualified to carry out Design Engineering services which includes:
√ Overhead Transmission line steel tower & Telecom steel tower
Basic Design and Analysis
√ Shop Erection Drawings
√ As-Built Drawings
MEGATRO performs in-house design activities specializing in electrical overhead transmission &telecom tower steel works, which include wind and earthquake loading, static analysis, stress analysis by finite element methods and fatigue.
Our Engineering Department is boasting of highly qualified engineering who are conversant with international codes and standards. The work is carried out with extensive use of CAE/CAD via a large of computer network. The computer hardware & drafting software are liked to the CNC workshop equipment for downloading of information thereby eliminating error and saving valuable production time.
MEGATRO is one of the few manufactures who assemble a face of 800KV HVDC cross-mountain lattice overhead power transmission steel structure tower. This attention to quality may not be the cheapest process but it does insure every tower meets our high standards of quality. And it helps to reduce on-site construction cost due to mismatched assemblies. After fabrication all 800KV HVDC cross-mountain lattice overhead power transmission steel structure towers are delivered to the galvanizing facility to be Hot DIP Galvanized. Towers are processed through the facility by Caustic Cleaning, Pickling, and then Fluxing. These strict procedures insure years of maintenance free towers. MEGATRO' 800KV HVDC cross-mountain lattice overhead power transmission steel structure tower systems can accommodate a variety of cross-arm. MEGATRO also offers a wide variety of accessories and mounts.
Other information:
Availability size: Based on the customer's requirements.
Material: Chinese material or as per clients requirement
Package: Both parties discuss before delivery
Port of Loading: Qingdao Port
Lead Time: One month or based on the customer's needs
Minimum order: 1 set
Fabrication standard: Chinese Standard or other standard which client accepted
Steel grades
Tower legs: Chinese steel Q460, which same to ASTM A572 GR65
Other webs, bracing and not stress plate and angle steel: Chinese Q235B, which same to ASTM A36
Plates: Chinese steel Q345B, which same to ASTM A572 GR50
Bolts: Chinese grade 6.8 and 8.8, which similar to ASTM A394
A) Dimension and tolerance for angle are according to GB/T1591-1994, similar to EN 10056-1/2
B) Hot dip galvanization in accordance with GB/T 13912-2002, which similar to ASTM A 123
C) The welding will be performance in accordance with AWS D1.1 or CWB standard
APPLICABLE STANDARD AND CODES
All towers manufactured and design shall be generally in accordance with latest revision of the following standards except where specifically directed otherwise.
General
IEC 60050 (151) International Electro-technical Vocabulary
Part 51 Electrical and Magnetic Devices
IEC 60050 (601) Chapter 601: Generation, transmission and distribution of electricity-General
IEC 60050 (601) Chapter 601: Generation, transmission and distribution of electricity-Operation
IEC 60059 IEC standard current ratings
Chinese Standard
No |
Code |
DESCRIPTION |
1 |
GB/T2694-2003 |
Power Transmission line Steel tower - Technical requirements for manufacturing |
2 |
JGJ81-2002 |
Technical specification for welding for steel structure of building |
3 |
GB9787-88 |
Measuring and allowable tolerance for hot-rolled equal angle |
4 |
GB709-88 |
Measuring and allowable tolerance for hot-rolled plate and strip |
5 |
GB/T699-1999 |
Quality Carbon Structural Steel |
6 |
GB/T1591-1994 |
Low alloy high strength structural Steel |
7 |
GB700-88 |
Carbon Structural Steel |
8 |
GB222-84 |
Method of sampling steel for determination of chemical composition and permissible variations |
9 |
GB/T228-2002 |
Method for Tensile testing of metals |
10 |
GB/T232-1999 |
Method for Bending test of metals |
11 |
GB/T5117-1995 |
Carbon Welding Rod |
12 |
GB/T5118-1995 |
Low Alloy Welding Rod |
13 |
GB/T8110-1995 |
Welding wires for gas shielding arc welding of carbon and low alloy steels |
14 |
GB/T10045-2001 |
Carbon steel flux cored electrodes for arc welding |
15 |
JB/T7949-1999 |
Weld outer dimensions for steel construction |
16 |
GB50205-2001 |
Test Standard for Acceptance of Steel Structure |
17 |
GB/T470-1997 |
Zinc Ingot |
18 |
GB3098.1-2000 |
Mechanical properties of fasteners-Part 1:Bolts, screws and studs |
19 |
GB3098.2-2000 |
Mechanical properties of fasteners-Part2: Nuts, and thread |
20 |
GB3098.3-2000 |
Mechanical properties of fasteners-Part3: Fastening screw |
21 |
GB/T5780-2000 |
Helical Bolts Grade C |
22 |
GB/T41-2000 |
Helical Nuts Grade C |
23 |
GB/T90-2002 |
Flat Washer Grade C |
24 |
GB/T13912-2002 |
Metal Coating, Technical Requirement and Test Method for Hot-dip galvanized Metal Parts |
American Standards:
Standard |
Description |
ASTM A6/A6M |
Standard specification for general requirements for rolled structural steel bars, plates, and sheet piling. |
ASTM - 6 |
- General Requirements for delivery of Rolled Steel Plates, Shapes, sheet Piling Bars for structural used |
ASTM A36/A36-M-97a |
Standard specification for Carbon structural steel |
ASTM A123 / A123M-02 |
Standard specification for Zinc (Hot-Dip Galvanized) Coatings on iron and steel products |
ASTM A143 / A143M-03 |
Standard Practise for Safeguarding Against Embitterment of Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embitterment |
ASTM A153/ A153M-05 |
Standard specification for zinc coating (Hot-Dip) on iron and steel hardware |
ASTM A - 194 |
- Grade for bolt |
ASTM A239 |
Standard practice for locating the thinnest spot in a zinc (Galvanized) Coating on Iron or Steel Articles |
ASTM A242 |
Standard specification for High-Strength Low-Alloy Structural steel |
ASTM A307 |
Standard Specification for Carbon Steel Bolts and Studs, 60000 PSI Tensile strength |
ASTM A370-06 |
Standard Test Methods and Definitions for Mechanical Testing of Steel Products |
ASTM A325 |
Standard Specification for structural bolts, steel, Heat treated 120/105 ksi minimum tensile strength |
ASTM A-325 or A-354 |
- Galvanized hexagonal head of connection bolt |
ASTM A325-97 |
Standard Specification for High-strength Bolts for structural steel Joints |
ASTM A384 / A384M-02 |
Standard Practise for Safeguarding Against Warpage and Distortion During Hot-Dip Galvanizing of Steel Assemblies. |
ASTM A394-93 |
Standard Specification for steel Transmission Tower, Bolts, Zinc Coated and Bare |
ASTMA - 563 |
- Class and size of nuts |
ASTMA - 572 |
- Chemical composition of steel |
ASTM A572/A572-97c |
Standard specification for High-Strength Low-Alloy Columbium-Vanadium Structural steel |
ASTMA - 615 |
- The anchor bolt material |
ASTM A673 / A673M-07 |
Standard Specification for Sampling Procedure for Impact Testing of Structural Steel |
ASTM B201 |
Standard practice for testing Chromatic coating on Zinc and Cadmium surfaces |
ASTM E94-93 |
Standard Guide for Radiographic Testing |
ASTM E 709-95 |
Standard Guide for Magnetic Particle Examination |
ASCE Manual 72 |
- Load testing a simple structure |
ASCE 10-97 |
Standard Design of latticed steel transmission structures |
AWS D1.1 |
American Welding Society D1,1/D1,1M structural Welding code- Steel |
ANSI B-182-2 |
Bolts, nuts and washers dimensions |
DIN VDE 0101 - Isokeraunic Level
VDE 0201 - Climatic and environmental conditions
CVDE 0210 - Minimum safety factors under simultaneous working loads
ISO R898 Mechanical Properties of Fasteners
BS EN ISO 1461:1991 - High dip galvanized coatings on fabricated iron and steel articles. Specifications and standards
A) BS 5950: Welding Terms And Symbols
B) BS 729: Hot - Dip Galvanised Coating On Iron And Steel Articles
C) BS 2901: Filler Rods And Wires For Gas Shielded Arc Welding: Part 1 Ferritic Steels
D) BS 3692: ISO Metric Precision Hexagon Bolts, Screws And Nuts
E) BS 4360: Weldable Structural Steel
F ) BS 5135: Metal - Arc Welding Of Carbon And Carbon Manganese Steel
G) BS 5950: Part 1: Code Of Practice For Loading Latticed Tower & Masts
Part 2: Guide To The Background And Use Of Part 1"Code OF Practice For Loading"
Part 3: Strength Assessment of Members
H) DD 133 (1986): Code Of Practice For Loading Latticed Tower & Masts
I) BS 4592 (1987): Part 2: Specification For Expanded Metal Grating Panels
J) BS 4592 (1977): Code Of Practice For Protective Coating Of Iron And Steel Structure Against Corrosion
K) BS 4190: Bracing & Flanged Bolts
L) BS 4190: Rolled Steel sections, Flats & Plates
If any special requirement, we can design and discuss with client.