• Megatro High-Voltage Direct Current (HVDC) Electric Power Transmission Tower
  • Megatro High-Voltage Direct Current (HVDC) Electric Power Transmission Tower
  • Megatro High-Voltage Direct Current (HVDC) Electric Power Transmission Tower

Megatro High-Voltage Direct Current (HVDC) Electric Power Transmission Tower

We Can Design It by Pls or Tower Softwar: as Per Client Requirements
Transport Package: Export Stnadard Package
Specification: AS PER CLIENT
Trademark: MEGATRO
Origin: Shandong, China
Diamond Member Since 2010

Suppliers with verified business licenses

Manufacturer/Factory, Other

Basic Info.

Model NO.
MGP- HVDC
HS Code
73082000
Production Capacity
50000 Tons/Year

Product Description

A high-voltage, direct current (HVDC) electric power transmission system (also called a power superhighway or an electrical superhighway) uses direct current for the bulk transmission of electrical power, in contrast with the more common alternating current (AC) systems. For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be justified, due to other benefits of direct current links. HVDC uses voltages between 100 kV and 1,500 kV.
Megatro High-Voltage Direct Current (HVDC) Electric Power Transmission Tower


HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between source and load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing exchange of power between incompatible networks.
In July 2016, ABB Group received a contract in China to build an ultrahigh-voltage direct-current (UHVDC) land link with a 1100 kV voltage, a 3,000 km (1,900 mi) length and 12 GW of power, setting world records for highest voltage, longest distance, and largest transmission capacity.
High voltage is used for electric power transmission to reduce the energy lost in the resistance of the wires. For a given quantity of power transmitted, doubling the voltage will deliver the same power at only half the current. Since the power lost as heat in the wires is proportional to the wires' resistance as a share of the total resistance, and doubling voltage allows for the quadrupling of nontransmission resistance without losing power, doubling the voltage reduces the line losses per unit of electrical power delivered by approximately a factor of 4. While power lost in transmission can also be reduced by increasing the conductor size, larger conductors are heavier and more expensive.
Cable systems

Long undersea / underground high-voltage cables have a high electrical capacitance compared with overhead transmission lines, since the live conductors within the cable are surrounded by a relatively thin layer of insulation (the dielectric), and a metal sheath. The geometry is that of a long coaxial capacitor. The total capacitance increases with the length of the cable. This capacitance is in a parallel circuit with the load. Where alternating current is used for cable transmission, additional current must flow in the cable to charge this cable capacitance. This extra current flow causes added energy loss via dissipation of heat in the conductors of the cable, raising its temperature. Additional energy losses also occur as a result of dielectric losses in the cable insulation.
Megatro High-Voltage Direct Current (HVDC) Electric Power Transmission Tower

However, if direct current is used, the cable capacitance is charged only when the cable is first energized or if the voltage level changes; there is no additional current required. For a sufficiently long AC cable, the entire current-carrying ability of the conductor would be needed to supply the charging current alone. This cable capacitance issue limits the length and power carrying ability of AC powered cables DC powered cables are limited only by their temperature rise and Ohm's Law. Although some leakage current flows through the dielectric insulator, this is small compared to the cable's rated current.
Overhead line systems

The capacitive effect of long underground or undersea cables in AC transmission applications also applies to AC overhead lines, although to a much lesser extent. Nevertheless, for a long AC overhead transmission line, the current flowing just to charge the line capacitance can be significant, and this reduces the capability of the line to carry useful current to the load at the remote end. Another factor that reduces the useful current carrying ability of AC lines is the skin effect, which causes a nonuniform distribution of current over the cross-sectional area of the conductor. Transmission line conductors operating with direct current do not suffer from either of these constraints. Therefore, for the same conductor losses (or heating effect), a given conductor can carry more current to the load when operating with HVDC than AC.

Finally, depending upon the environmental conditions and the performance of overhead line insulation operating with HVDC, it may be possible for a given transmission line to operate with a constant HVDC voltage that is approximately the same as the peak AC voltage for which it is designed and insulated. The power delivered in an AC system is defined by the root mean square (RMS) of an AC voltage, but RMS is only about 71% of the peak voltage. Therefore, if the HVDC line can operate continuously with an HVDC voltage that is the same as the peak voltage of the AC equivalent line, then for a given current (where HVDC current is the same as the RMS current in the AC line), the power transmission capability when operating with HVDC is approximately 40% higher than the capability when operating with AC
 

Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now